The negation of the compound statement $^ \sim p \vee \left( {p \vee \left( {^ \sim q} \right)} \right)$ is

  • A

    $\left( {^ \sim p \wedge q} \right) \wedge p$

  • B

    $\left( {^ \sim p \wedge q} \right) \vee p$

  • C

    $\left( {^ \sim p \wedge q} \right){ \vee \,^ \sim }p$

  • D

    $\left( {^ \sim p{ \wedge ^ \sim }q} \right){ \wedge \,^ \sim }q$

Similar Questions

Negation of “Ram is in Class $X$ or Rashmi is in Class $XII$” is

The statement $[(p \wedge  q) \rightarrow p] \rightarrow (q \wedge  \sim q)$ is

If the inverse of the conditional statement $p \to \left( { \sim q\ \wedge  \sim r} \right)$ is false, then the respective truth values of the statements $p, q$ and $r$ is

Which of the following is logically equivalent to $\sim(\sim p \Rightarrow q)$

Which of the following is the inverse of the proposition : “If a number is a prime then it is odd.”